Precoloring Extension 3: Classes of Perfect Graphs

نویسندگان

  • Mihály Hujter
  • Zsolt Tuza
چکیده

We continue the study of the following general problem on vertex colorings of graphs. Suppose that some vertices of a graph G are assigned to some colors. Can this “precoloring” be extended to a proper coloring of G with at most k colors (for some given k)? Here we investigate the complexity status of precoloring extendibility on some classes of perfect graphs, giving good characterizations (necessary and sufficient conditions) that lead to algorithms with linear or polynomial running time. It is also shown how a larger subclass of perfect graphs can be derived from graphs containing no induced path on four vertices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NP completeness of the edge precoloring extension problem on bipartite graphs

We show that the following problem is NP complete: Let G be a cubic bipartite graph and f be a precoloring of a subset of edges of G using at most three colors. Can f be extended to a proper edge 3-coloring of the entire graph G? This result provides a natural counterpart to classical Holyer's result on edge 3-colorability of cubic graphs and a strengthening of results on precoloring extension ...

متن کامل

Exploring the complexity boundary between coloring and list-coloring

Many classes of graphs where the vertex coloring problem is polynomially solvable are known, the most prominent being the class of perfect graphs. However, the list-coloring problem is NP-complete for many subclasses of perfect graphs. In this work we explore the complexity boundary between vertex coloring and list-coloring on such subclasses of perfect graphs, where the former admits polynomia...

متن کامل

On coloring problems with local constraints

We show complexity results for some generalizations of the graph coloring problem on two classes of perfect graphs, namely clique trees and unit interval graphs. We deal with the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ, μ)-coloring problem (lower a...

متن کامل

Precoloring Extension of Co-Meyniel Graphs

The pre-coloring extension problem consists, given a graph G and a subset of nodes to which some colors are already assigned, in finding a coloring of G with the minimum number of colors which respects the pre-coloring assignment. This can be reduced to the usual coloring problem on a certain contracted graph. We prove that pre-coloring extension is polynomial for complements of Meyniel graphs....

متن کامل

The d-precoloring problem for k-degenerate graphs

In this paper we deal with the d-Precoloring Extension problem, (d-PrExt), in various classes of graphs. The d-PrExt problem is the special case of precoloring extension problem where, for a fixed constant d, input instances are restricted to contain at most d precolored vertices for every available color. The goal is to decide if there exists an extension of given precoloring using only availa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1996